Adaptive Critic Design for Aircraft Control

Silvia Ferrari Advisor: Prof. Robert F. Stengel Princeton University

FAA/NASA Joint University Program on Air Transportation, MIT, Cambridge, MA

January 18-19, 2001

Table of Contents

- Introduction and motivation
- Optimal control problem
- Dynamic programming formulation
- Adaptive critic designs
- Proportional-Integral Neural Network Controller
- Pre-training of action and critic networks
- On-line training of action and critic networks
- Summary and Conclusions

Introduction

- Gain scheduled linear controllers for nonlinear systems
- Classical/neural synthesis of control systems
 Prior knowledge
 Adaptive control and artificial neural networks
- Adaptive critics

Learn in real time

Cope with noise

Cope with many variables

Plan over time in a complex way

...

Action network takes immediate control action

Critic network estimates projected cost

Motivation for Neural Network-Based Controller

- Network of networks motivated by linear control structure
- Multiphase learning:
 Pre-training
 On-line training during piloted simulations or testing
- Improved global control
- Pre-training phase provides:
 A global neural network controller
 An excellent initialization point for on-line learning
- On-line training accounts for:
 Differences between actual and assumed dynamic models
 Nonlinear effects not captured in linearizations

Nonlinear Business Jet Aircraft Model

Aircraft Equations of Motion:

$$\frac{d\mathbf{x}(t)}{dt} = \dot{\mathbf{x}}(t) = \mathbf{f}[\mathbf{x}(t), \mathbf{p}(t), \mathbf{u}(t)]$$

$$\mathbf{y}(t) = \mathbf{h}[\mathbf{x}(t), \mathbf{p}(t), \mathbf{u}(t)]$$

State vector: $\mathbf{x}(t) \in \mathfrak{R}^n$

Control vector: $\mathbf{u}(t) \in \mathfrak{R}^m$

Parameters: $\mathbf{p}(t) \in \mathfrak{R}^{\ell}$

Output vector: $\mathbf{y}(t) \in \Re^r$

Bolza Type Cost Function Minimization:

$$J = \phi \left[\mathbf{x}(t_f), t_f \right] + \int_{t_0}^{t_f} \mathbf{L} \left[\mathbf{x}(\tau), \mathbf{u}(\tau), \tau \right] d\tau$$

Value Function Minimization

Value Function for $[t, t_f]$:

$$V[\mathbf{x}(t),\mathbf{u}(\tau),t] = \phi[\mathbf{x}(t_f),t_f] + \int_{t}^{t_f} \mathbf{L} [\mathbf{x}(\tau),\mathbf{u}(\tau),\tau] d\tau$$

The minimization of *J* can be *imbedded* in the following problem:

$$V^*[\mathbf{x}(t),t] = \min_{\substack{\mathbf{u}(\tau)\\t \le \tau \le t_f}} \left\{ \phi[\mathbf{x}(t_f),t_f] + \int_t^{t_f} \mathbf{L} [\mathbf{x}(\tau),\mathbf{u}(\tau),\tau] d\tau \right\}$$

Discretized Optimization Problem

Approximate the equations of motion by a difference equation:

$$\mathbf{x}(k+1) = \mathbf{f}_D[\mathbf{x}(k), \mathbf{p}(k), \mathbf{u}(k)],$$

where:
$$\mathbf{x}(k) \equiv \mathbf{x}(k\Delta t)$$
, $\Delta t = t_f / k_f$, $k \rightarrow t_k = 0, \Delta t, \dots, (k_f - 1)\Delta t, k_f \Delta t$

Similarly, the cost function:

$$J = \phi[\mathbf{x}(k_f), k_f] + \sum_{k=0}^{k_f-1} \mathbf{L}_D[\mathbf{x}(k), \mathbf{u}(k), k]$$

The cost of operation during the last stage is:

$$V_{k_f-1,k_f}[\mathbf{x}(k_f-1),\mathbf{u}(k_f-1)] = \phi[\mathbf{x}(k_f),k_f] + \mathbf{L}_D[\mathbf{x}(k_f-1),\mathbf{u}(k_f-1)]$$

The Principle of Optimality

The optimal cost, from t_{k_f-1} to t_{k_f} , is then:

$$V^*_{k_f-1,k_f} [\mathbf{x}(k_f-1)] = \min_{\mathbf{u}(k_f-1)} \{ \phi[\mathbf{x}(k_f), k_f] + \mathbf{L}_D[\mathbf{x}(k_f-1), \mathbf{u}(k_f-1)] \}$$

Similarly, the optimal cost over the last two intervals is given by:

$$V^*_{k_f-2,k_f} \left[\mathbf{x} \left(k_f - 2 \right) \right] \equiv$$

$$\min_{\mathbf{u}(k_f-2),\mathbf{u}(k_f-1)} \left\{ \mathbf{L}_D \left[\mathbf{x}(k_f-2), \mathbf{u}(k_f-2) \right] + V_{k_f-1,k_f} \left[\mathbf{x}(k_f-1), \mathbf{u}(k_f-1) \right] \right\}$$

By the principle of optimality,

Given V_{ab} ,

if V_{abc} is optimal from a to c,

then V_{bc} is optimal from b to c:

$$V^*_{abc} = V_{ab} + V^*_{bc}$$

A Recurrence Relationship of Dynamic Programming

So, the optimal cost for a 2-stage process can be re-written as:

$$V^*_{k_f-2,k_f} \left[\mathbf{x} (k_f - 2) \right] = \min_{\mathbf{u}(k_f-2)} \left\{ \mathbf{L}_D \left[\mathbf{x} (k_f - 2), \mathbf{u} (k_f - 2) \right] + V^*_{k_f-1,k_f} \right\}$$

Then, for a *k*-stage process:

$$V^*_{k_f-n,k_f} \left[\mathbf{x} \left(k_f - n \right) \right] = \min_{\mathbf{u}(k_f-n),\mathbf{u}(k_f-n+1),\dots,\mathbf{u}(k_f-1)} \left\{ \phi \left[\mathbf{x} \left(k_f \right), k_f \right] + \sum_{k=k_f-n}^{k_f-1} \mathbf{L}_D \left[\mathbf{x} \left(k \right), \mathbf{u} \left(k \right) \right] \right\}$$

$$= \min_{\mathbf{u}(k_f-n)} \left\{ \mathbf{L}_D \left[\mathbf{x} \left(k_f - n \right), \mathbf{u} \left(k_f - n \right) \right] + V^*_{k_f-n+1,k_f} \right\}$$

Backward Dynamic Programming

- Begin at t_f
- Move backward to t_0
- Store all \mathbf{u} and V
- Off-line process

Forward Dynamic Programming

Cost associated with going from t_k to t_f :

$$V[\mathbf{x}(t_k)] \equiv V_{k,k_f} = \underbrace{U\{\mathbf{x}(t_k), \mathbf{u}[\mathbf{x}(t_k)]\}}_{\text{Utility}} + \underbrace{V[\mathbf{x}(t_{k+1})]\}}_{\text{Estimated cost for } t_{k+1} \leq t \leq t_f$$

Hereon, let $t = t_k$, $t + 1 = t_{k+1}$, etc...

- Estimate cost-to-go function, $\langle \bullet \rangle$
- Determine immediate control action
- Move forward in time, updating cost-to-go function
- On-line process

Adaptive Critic Designs .. at a Glance!

Proportional-Integral Controller

Closed-loop stability: $\mathbf{x}(t) \rightarrow \mathbf{x}_c$, $\mathbf{u}(t) \rightarrow \mathbf{u}_c$, $\tilde{\mathbf{y}}(t) \rightarrow 0$

Omitting Δ 's, for simplicity:

$$\tilde{\mathbf{y}}(t) = \mathbf{y}_{S}(t) - \mathbf{y}_{C}, \quad \tilde{\mathbf{u}}(t) = \mathbf{u}(t) - \mathbf{u}_{C}, \dots, \quad \mathbf{y}_{c} = \text{desired output}, \quad (\mathbf{x}_{c}, \mathbf{u}_{c}) = \text{set point}.$$

Linearized Business Jet Aircraft Model

Assuming small perturbations, expand about nominal solution:

$$\Delta \dot{\mathbf{x}}(t) = \mathbf{F} \Delta \mathbf{x}(t) + \mathbf{G} \Delta \mathbf{u}(t)$$
$$\Delta \mathbf{y}(t) = \mathbf{H}_{\mathbf{x}} \Delta \mathbf{x}(t) + \mathbf{H}_{\mathbf{u}} \Delta \mathbf{u}(t)$$

where:
$$\mathbf{F} \equiv \frac{\partial \mathbf{f}(\mathbf{x}, \mathbf{u})}{\partial \mathbf{x}}$$
, $\mathbf{G} \equiv \frac{\partial \mathbf{f}(\mathbf{x}, \mathbf{u})}{\partial \mathbf{u}}$, $\mathbf{H}_{\mathbf{X}} \equiv \frac{\partial \mathbf{h}(\mathbf{x}, \mathbf{u})}{\partial \mathbf{x}}$, $\mathbf{H}_{\mathbf{u}} \equiv \frac{\partial \mathbf{h}(\mathbf{x}, \mathbf{u})}{\partial \mathbf{u}}$

The state variable is augmented to include the output error integral, $\xi(t)$,

$$\Delta \dot{\mathbf{x}}_{a}(t) = \begin{bmatrix} \Delta \dot{\tilde{\mathbf{x}}}^{T}(t) & \Delta \dot{\xi}^{T}(t) \end{bmatrix}^{T} = \begin{bmatrix} \mathbf{F} & \mathbf{0} \\ \mathbf{H}_{x} & \mathbf{0} \end{bmatrix} \Delta \mathbf{x}_{a}(t) + \begin{bmatrix} \mathbf{G} \\ \mathbf{H}_{u} \end{bmatrix} \Delta \tilde{\mathbf{u}}(t)$$

and the **Proportional-Integral cost function** is defined as:

$$J = \frac{1}{2} \int_{0}^{\infty} \left[\Delta \mathbf{x}_{a}^{T}(\tau) \mathbf{Z} \Delta \mathbf{x}_{a}(\tau) + 2\Delta \mathbf{x}_{a}^{T}(\tau) \mathbf{S} \Delta \widetilde{\mathbf{u}}(\tau) + \Delta \widetilde{\mathbf{u}}^{T}(\tau) \mathbf{R} \Delta \widetilde{\mathbf{u}}(\tau) \right] d\tau$$

Linear Proportional-Integral Control Law Formulation

From the Euler-Lagrange equations, the **optimal*** **control law** is:

$$\Delta \widetilde{\mathbf{u}}^*(t) = -\mathbf{R}^{-1} [\mathbf{G}^T \mathbf{P} + \mathbf{M}^T] \Delta \mathbf{x}_a(t)$$
$$= -\mathbf{C} \Delta \mathbf{x}_a(t) = -[\mathbf{C}_B \quad \mathbf{C}_I] \Delta \mathbf{x}_a(t)$$

where **P** is a *Riccati matrix*.

Furthermore,

it can be shown that the **optimal value function** is

$$V^*[\Delta \mathbf{x}_a(t)] = \frac{1}{2} \Delta \mathbf{x}_a^T(t) \mathbf{P} \Delta \mathbf{x}_a(t)$$

and its partial derivative with respect to $\Delta \mathbf{x}_a$ is:

$$\frac{\partial V^*}{\partial \Delta \mathbf{x}_a} [\Delta \mathbf{x}_a(t)] = \Delta \mathbf{x}_a^T(t) \mathbf{P}$$

Proportional-Integral Neural Network Controller

Where: $\mathbf{x}(t) \rightarrow \mathbf{x}_c$, $\mathbf{u}(t) \rightarrow \mathbf{u}_c$, $\tilde{\mathbf{y}}(t) \rightarrow 0$, $\mathbf{y}_s(t) \rightarrow \mathbf{y}_c$

Feedback and Command-Integral (Action) Neural Network Pre-Training

Feedback Requirements (pre-training phase):

 \mathbf{NN}_B accounts for regulation, $\Delta \mathbf{u}_B = \mathbf{NN}_B(\Delta \widetilde{\mathbf{x}}, \mathbf{a})$.

For each operating point, k, a **z** output and inputs:

$$\mathbf{p} \equiv \begin{bmatrix} \mathbf{p}_{\Delta \widetilde{\mathbf{x}}}^T & \mathbf{p}_{\mathbf{a}}^T \end{bmatrix}^T \longrightarrow$$

(R1)
$$\mathbf{z}(\mathbf{0}, \mathbf{a}^k) = \mathbf{0}$$

(R2) $\frac{\partial \mathbf{z}}{\partial \mathbf{p}_{\Delta \mathbf{x}}}\Big|_{k} = \frac{\partial (\Delta \mathbf{u}_B)}{\partial (\Delta \mathbf{x})}\Big|_{k} = -\mathbf{C}_B(\mathbf{a}^k)$

Command-Integral Requirements (pre-training phase):

 \mathbf{NN}_I provides dynamic compensation, $\Delta \mathbf{u}_I = \mathbf{NN}_I(\Delta \boldsymbol{\xi}, \mathbf{a})$.

For each operating point, *k*, a **z** output and inputs:

$$\mathbf{p} \equiv \begin{bmatrix} \mathbf{p}_{\Delta\xi}^T & \mathbf{p}_{\mathbf{a}}^T \end{bmatrix}^T \qquad \longrightarrow$$

(R1)
$$\mathbf{z}(\mathbf{0}, \mathbf{a}^k) = \mathbf{0}$$

(R2) $\frac{\partial \mathbf{z}}{\partial \mathbf{p}_{\Delta \xi}} \bigg|_{k} = \frac{\partial (\Delta \mathbf{u}_I)}{\partial (\Delta \xi)} \bigg|_{k} = -\mathbf{C}_I(\mathbf{a}^k)$

Critic Neural Network Pre-Training

From the Proportional-Integral optimal value function derivatives:

•
$$\lambda[\Delta \mathbf{x}_a(t)] \equiv \frac{\partial V^*}{\partial \Delta \mathbf{x}_a}[\Delta \mathbf{x}_a(t)] = \Delta \mathbf{x}_a^T(t)\mathbf{P} \rightarrow \lambda[\mathbf{0}] = \mathbf{0}$$

$$\bullet \quad \frac{\partial^2 V^*}{\partial (\Delta \mathbf{x}_a)^2}(t) = \mathbf{P}$$

Critic Requirements (pre-training phase):

 \mathbf{NN}_C estimates the value function derivatives, $\lambda = \mathbf{NN}_C(\Delta \mathbf{x}_a, \mathbf{a})$.

For each operating point, k, a **z** output and training inputs:

$$\mathbf{p} \equiv \begin{bmatrix} \mathbf{p}_{\Delta \mathbf{x}_a}^T & \mathbf{p}_{\mathbf{a}}^T \end{bmatrix}^T \longrightarrow$$

(R1)
$$\mathbf{z}(\mathbf{0}, \mathbf{a}^k) = 0$$

(R2) $\frac{\partial \mathbf{z}}{\partial \mathbf{p}_{\Delta \mathbf{x}_a}} \bigg|_{k} = \frac{\partial^2 V^*}{\partial (\Delta \mathbf{x}_a)^2} \bigg|_{k} = \mathbf{P}(\mathbf{a}^k)$

Action and Critic Neural Network On-line Training by Dual Heuristic Programming

The same cost function is optimized in pre-training and in on-line learning

$$J = \frac{1}{2} \sum_{t=0}^{\infty} \left[\Delta \mathbf{x}_{a}^{T}(t) \mathbf{Z} \Delta \mathbf{x}_{a}(t) + 2\Delta \mathbf{x}_{a}^{T}(t) \mathbf{S} \Delta \widetilde{\mathbf{u}}(t) + \Delta \widetilde{\mathbf{u}}^{T}(t) \mathbf{R} \Delta \widetilde{\mathbf{u}}(t) \right]$$

The cost-to-go at time t,

$$V[\Delta \mathbf{x}_a(t)] = U\{\Delta \mathbf{x}_a(t), \Delta \widetilde{\mathbf{u}}[\Delta \mathbf{x}_a(t)]\} + \langle V[\Delta \mathbf{x}_a(t+1)] \rangle,$$

must be minimized w.r.t. $\Delta \tilde{\mathbf{u}}(t)$, for an estimated cost-to-go at (t+1).

The utility function is defined as:

$$U[\Delta \mathbf{x}_{a}(t), \Delta \widetilde{\mathbf{u}}(t)] = \frac{1}{2} \left[\Delta \mathbf{x}_{a}^{T}(t) \mathbf{Z} \Delta \mathbf{x}_{a}(t) + 2\Delta \mathbf{x}_{a}^{T}(t) \mathbf{S} \Delta \widetilde{\mathbf{u}}(t) + \Delta \widetilde{\mathbf{u}}^{T}(t) \mathbf{R} \Delta \widetilde{\mathbf{u}}(t) \right]$$

Optimality Conditions for Dual Heuristic Programming

Differentiating both sides of the value function, $V[\Delta \mathbf{x}_a(t)]$, w.r.t. $\Delta \mathbf{x}_a(t)$:

$$\lambda \left[\Delta \mathbf{x}_{a}(t)\right] \equiv \frac{\partial V\left[\Delta \mathbf{x}_{a}(t)\right]}{\partial \Delta \mathbf{x}_{a}(t)} = \frac{\partial U\left[\bullet\right]}{\partial \Delta \mathbf{x}_{a}(t)} + \frac{\partial U\left[\bullet\right]}{\partial \Delta \mathbf{u}(t)} \frac{\partial \Delta \mathbf{u}\left[\Delta \mathbf{x}_{a}(t)\right]}{\partial \Delta \mathbf{x}_{a}(t)} + \left\langle \lambda \left[\Delta \mathbf{x}_{a}(t+1)\right] \frac{\partial \Delta \mathbf{x}_{a}(t+1)}{\partial \Delta \mathbf{x}_{a}(t)} \right\rangle + \left\langle \lambda \left[\Delta \mathbf{x}_{a}(t+1)\right] \frac{\partial \Delta \mathbf{x}_{a}(t+1)}{\partial \Delta \mathbf{u}(t)} \frac{\partial \Delta \mathbf{u}\left[\Delta \mathbf{x}_{a}(t)\right]}{\partial \Delta \mathbf{u}(t)} \right\rangle \equiv \mathbf{F}_{c}\left(\bullet\right),$$

Optimality equation:
$$\frac{\partial V[\Delta \mathbf{x}_a(t)]}{\partial \Delta \widetilde{\mathbf{u}}(t)} = \mathbf{0}$$

Differentiating w.r.t. the control, $\Delta \tilde{\mathbf{u}}(t)$:

$$\frac{\partial U[\bullet]}{\partial \Delta \widetilde{\mathbf{u}}(t)} + \left\langle \lambda \left[\Delta \mathbf{x}_a(t+1) \right] \frac{\partial \Delta \mathbf{x}_a(t+1)}{\partial \Delta \widetilde{\mathbf{u}}(t)} \right\rangle \equiv \mathbf{F}_A(\bullet) = \mathbf{0}$$

Action Network On-line Training

Train action network, at time t, holding the critic parameters fixed

Critic Network On-line Training

Train critic network, at time t, holding the action parameters fixed

[Balakrishnan and Biega, 1996]

Summary

- Aircraft optimal control problem
- Linear multivariable control structure
- Corresponding nonlinear controller
- Adaptive critic architecture:

Action and critic networks

- Algebraic pre-training based on a-priori knowledge
- On-line training during simulations (severe conditions)

Conclusions and Future Work

- Nonlinear, adaptive, real-time controller:
 Maintain stability and robustness throughout flight envelope
 Improve aircraft control performance under extreme conditions
- Systematic approach for designing nonlinear control systems motivated by well-known linear control structures
- Innovative neural network training techniques

Future Work:

- Adaptive critic architecture implementation
- Testing: acrobatic maneuvers, severe operating conditions, coupling and nonlinear effects